

January 2025 Rudbeckianska upper secondary school Västerås, Sweden

Physics - Form 11

Question 1. Passive solar house

(10 points)

(7)

(3)

A house uses solar energy to heat 50 glass containers to $80\,^{\circ}\mathrm{C}$ during the day. Each glass container is filled with $20\,\mathrm{L}$ of water. The house loses heat at an average rate of $50\,000\,\mathrm{kJ}\,\mathrm{h}^{-1}$ during a $10\,\mathrm{h}$ long winter night. A thermostat-controlled $15\,\mathrm{kW}$ back-up electric heater turns on whenever necessary to keep the house at a constant temperature of $22\,^{\circ}\mathrm{C}$.

- (a) How long did the electric heater run at night?
- (b) How long would the electric heater need to run if the house did not have solar heating?

Hint: The specific heat capacity of water is $c_v = 4.18 \,\mathrm{kJ \, kg^{-1}}$.

January 2025 Rudbeckianska upper secondary school Västerås, Sweden

Question 2. Force between boxes

(10 points)

Two boxes are placed on a inclined plane. The mass of box A is $m_A = 25\,\mathrm{kg}$ and box B has mass $m_B = 15\,\mathrm{kg}$. The friction coefficient between the surface of the inclined plane and the boxes is for box A $\mu_A = 0.7$, and for box B $\mu_B = 0.3$. What is the force between the two boxes right after they are released? **Hint:** Assume that they move together down the slope and set $g = 9.82\,\mathrm{m\,s^{-2}}$.

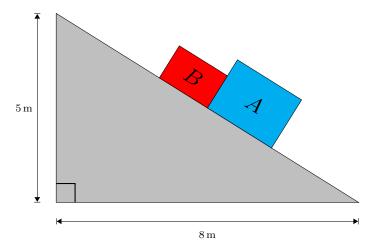


Figure 1: The problem setup and the geometry for the two inclined plane and the two boxes A and B.

January 2025 Rudbeckianska upper secondary school Västerås, Sweden

Question 3. Mid-air collision of golf balls

(10 points)

(3)

(2)

(3)

Karl and Gustav play golf on neighboring holes. The golf course is designed in such a way that the fairways of the holes intersect, see Figure 3. Karl hits his golf ball at an angle $\theta_K = 30^{\circ}$ and an initial velocity v_K . Gustav hits his golf ball at the same time at an angle θ_G and an initial velocity v_G . The golf balls collide at the apex of Gustav's trajectory. **Hint:** The gravitational constant is $g = 9.82 \,\mathrm{m\,s^{-2}}$.

- (a) Find Gustav's launch angle θ_G and the initial velocities v_K and v_G .
- (b) Where does the golf balls land? **Hint:** Assume that the collision is perfectly inelastic, and that the golf balls have the same mass m.
- (c) How long are the balls in the air after the collision? (2)
- (d) What is the change of kinetic energy due to the collision?

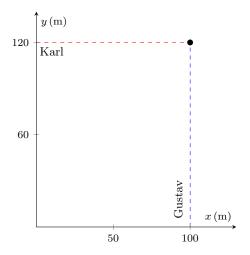
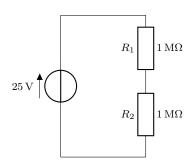


Figure 3: Starting position of Karl and Gustav

January 2025 Rudbeckianska upper secondary school Västerås, Sweden


Question 4. Non-ideal electrical sources and meters

(10 points)

(4)

(2)

- (a) The voltage across the terminals of a black box is measured to $U_m = 25\,\mathrm{V}$ and the current to $I_m = 7.5\,\mathrm{mA}$. The measurements are made with an ideal voltmeter and an ideal ampere meter. The black box can be modeled, equivalently, as either a voltage source with voltage U_T and internal resistance R_T or as a current source with current I_N and internal resistance R_N . Calculate U_T, R_T, I_N, R_N and draw the equivalent circuits.
- (b) The voltage over the resistor R_2 is measured with a non-ideal voltmeter with internal resistance $R_{\rm in} = 10 \,\mathrm{M}\Omega$. What voltage does the voltmeter display?

- (c) A voltmeter with internal resistance $R_{\rm in} = 100 \,\mathrm{k}\Omega$ can measure voltages up to $U_{\rm max} = 2 \,\mathrm{V}$. (2) Suggest a measuring technique that allows voltage measurements up to 230 V.
- (d) An ampere meter with internal resistance $R_{\rm in} = 10\,\Omega$ can measure current up to $I_{\rm max} = 20\,{\rm mA}$. (2) Suggest a measuring technique that allows current measurements up to 1 A.