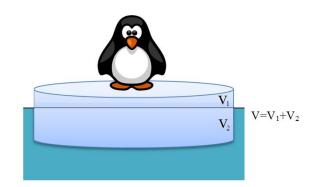
1. An ice floe which height is 20 cm and cross-sectional area 1.5 m² floats in the ocean. Ice density is 900 kg/m³, water density is 1030 kg/m³, acceleration of gravity is 10 m/s².



- **a.** Draw all forces.
- **b.** Calculate the gravity force of the ice floe.
- c. What Archimedes force will act the ice floe?
- **d.** Calculate the percentage of the ice floe volume (V_1) which is above the water?
- e. What is the maximum mass of penguin which can stand on the ice floe and his feet will be dry?

a) drew correctly	1 mark
b) $F_g = mg = \rho_{ice} Vg = \rho_{ice} Shg$	1 mark
$F_g = 900 * 1.5 * 0.2 * 10 = 2700 N$	
$F_g = 2.7 \ kN$	1 mark
c) $F_A = 2.7 \ kN$	1 mark
d) $\rho_{H20} \cdot g \cdot V_2 = \rho_{ice} \cdot g \cdot V$	1 mark
$V_{2} = \frac{\rho_{ice} \cdot g \cdot V}{\rho_{H2O} \cdot g} = \frac{\rho_{ice} \cdot S \cdot h}{\rho_{H2O}}$	
$\frac{V_1}{V} = \frac{V - V_2}{V} = 1 - \frac{V_2}{S \cdot h} = \frac{\rho_{ice}}{\rho_{H2O}}$	1 mark
$\frac{V_1}{V} = 1 - \frac{900}{1030} = 0.13$	
$\frac{V_1}{V} = 13\%$	1 mark
e) $m = \frac{F_{Amax} - F_g}{g}$	1 mark
$F_{Amax=\rho_{H2O}\cdot g\cdot V=\rho_{H2O}\cdot g\cdot S\cdot h}$	1 mark
$m = \frac{(\rho_{H20}Sh - \rho_{ice}Sh)g}{g} = Sh(\rho_{H20} - \rho_{ice}) = 39$ kg.	1 mark

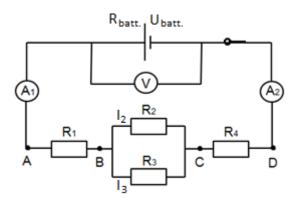
2. A piece of ice which mass is 200 g and temperature is -10 °C is in the calorimeter. The leaden ball which temperature is 200 °C is put on this piece of ice. 90% ice and 10% water remained in the calorimeter when the thermodynamic equilibrium steadied.

Material	Specific heat (c), $\frac{J}{kg \cdot c}$	Density (ρ), $\frac{kg}{m^3}$	Specific heat of melting (λ), $\frac{J}{kg}$
Lead	138	11 400	
Water	4200	1000	
Ice	2100	900	$3.3 \cdot 10^5$

- **a.** Calculate the radius of the ball.
- **b.** The second ball of the same temperature is additionally placed on the ice. The remaining ice melts and the water heats up to 10 °C. Calculate the radius of the second ball. (Ignore the steaming).

a) After inserting the ball 10% ice melted and the temperature stabilized to $t_0 = 0$ ° C.	
$c_{ice}m_{ice}(t_0 - t_{ice}) + \lambda_{ice}0.1m = c_{ball}m_{ball1}(t - t_0)$	1 mark
$m_{ball1} = V_{ball1} \cdot \rho_{ball} = \frac{4}{3}\pi r_{ball1}^3 \cdot \rho_{ball}$	1 mark
$r_{ball1} = \sqrt[3]{\frac{c_{ice}m_{ice}(t_{0} - t_{ice}) + \lambda_{ice}0.1m}{\frac{4}{3}\pi\rho_{ball}c_{ball}(t - t_{0})}}$	1 mark
$r_{ball1} = 1,5 \text{ cm}$	1 mark
b) After inserting the second ball remaining ice will melt. The water and the first ball will heat up to temperature $t_1 = 10 \degree C$.	
$\lambda_{ice} 0.9m + c_{H20} m_{H20} (t_1 - t_0) + c_{ball} m_{ball1} (t_1 - t_0)$ = $c_{ball} m_{ball2} (t - t_1)$	2 marks
$m_{ball2} = V_{ball2} \cdot \rho_{ball} = \frac{4}{3}\pi r_{ball2}^3 \cdot \rho_{ball}$	1 mark
$m_{ball1} = V_{ball1} \cdot \rho_{ball} = \frac{4}{3}\pi r_{ball1}^3 \cdot \rho_{ball} = 0.16 \text{ kg}$	
$r_{ball2} = \sqrt[3]{\frac{\lambda_{ice} 0.9m + c_{H20}m(t_1 - t_0) + c_{ball}m_{ball1}(t_1 - t_0)}{\frac{4}{3}\pi\rho_{ball}c_{ball}(t - t_1)}}$	2 marks
$r_{ball2} = 3.7 \ cm$	1 mark

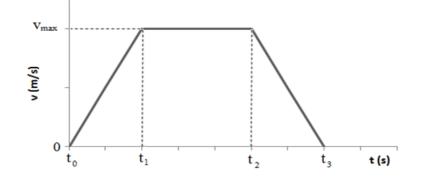
3. Electric circuit consists of a 12 V and 2 Ω battery and conductors whose resistances are $R_1 = 1 \Omega$, $R_2 = 2 \Omega$, $R_3 = 5 \Omega$, $R_4 = 4 \Omega$.



- **a.** Calculate the total resistance of the electric circuit.
- **b.** What the amperemeter A_1 will show? Amperemeter A_2 ?
- c. Calculate the current I_2 flowing through the resistor R_2 .
- **d.** Compare voltage between points AB and BC $\left(\frac{V_{AB}}{V_{BC}}\right)$
- e. Calculate the current of the short-circuit.

a) $R = R_{batt.} + R_1 + R_{23} + R_4,$	1 mark
$R_{23} = \frac{R_2 R_3}{R_2 + R_3} ,$	
$R = 8.43 \ \Omega$	1 mark
b) $I = I_{A1} = I_{A2}$	
$I = \frac{U_{batt.}}{R} = 1.42 \text{ A}$	1 mark
$\mathbf{c}) I_2 R_2 = I_3 R_3,$	1 mark
$I_3 = \frac{I_2 R_2}{R_3},$	
$I = I_2 + I_3 = I_2 + \frac{I_2 R_2}{R_3} = \frac{I_2 (R_2 + R_3)}{R_3}$	2 marks
$I_2 = \frac{IR_3}{(R_2 + R_3)} = 1 A$	1 mark
d) $\frac{V_{AB}}{V_{BC}} = \frac{IR_1}{I_2R_2} = 0.71$	2 marks
e) $I_{max} = \frac{V_{batt.}}{R_{batt.}} = 6 A$	1 mark

4. The bus 2 km distance between stations travels over 140 s. The maximum velocity of the bus is 16 m/s. The accelerations in the beginning and at the end of the distance are identical.



- **a.** Calculate the distances S_1 , S_2 , S_3 .
- **b.** Calculate the accelerations a_1 , a_2 , a_3 at all times intervals.
- **c.** Draw the graph of the acceleration dependence on time.
- **d.** How many turns the 70 cm diameter wheels of the bus made to a full stop when the bus began to stop in the distance S_3 ?

a)	
$S_1 = \frac{a_1(t_1 - t_0)^2}{2}, v_{max} = a_1(t_1 - t_0),$	
$S_1 = \frac{v_{max}(t_1 - t_0)}{2}$	
$S_2 = v_{max}(t_2 - t_1)$	1 mark
$S_3 = S_1 = \frac{v_{max}(t_1 - t_0)}{2}$	
$S = S_1 + S_2 + S_3 = v_{max}t_2, t_2 = t_3 - t_1$	
$S = v_{max}(t_3 - t_1),$	
$t_1 = t_3 - \frac{s}{v_{max}} = 15 \text{ s},$	1 mark
$t_2 = t_3 - t_1 = 125 \ s$	
$S_1 = S_3 = \frac{v_{max}(t_1 - t_0)}{2} = 120 \ m$	1 mark
$S_2 = v_{max}(t_2 - t_1) = 1760 m$	
b)	
$a_1 = \frac{v_{max}}{t_1}, \qquad a_3 = -a_1$	1 mark
$a_1 = 1 m/s^2$, $a_2 = 0 m/s^2$, $a_3 = -1 m/s^2$,	1 mark

